The NO/cGMP pathway inhibits Rap 1 activation in human platelets via cGMP-dependent protein kinase I.
نویسندگان
چکیده
The NO/cGMP signalling pathway strongly inhibits agonist-induced platelet aggregation. However, the molecular mechanisms involved are not completely defined. We have studied NO/cGMP effects on the activity of Rap 1, an abundant guanine-nucleotidebinding protein in platelets. Rap 1-GTP levels were reduced by NO-donors and activators of NO-sensitive soluble guanylyl cyclase. Four lines of evidence suggest that NO/cGMP effects are mediated by cGMP-dependent protein kinase (cGKI): (i) Rap 1 inhibition correlated with cGKI activity as measured by the phosphorylation state of VASP, an established substrate of cGKI, (ii) 8-pCPT-cGMP, a membrane permeable cGMP-analog and activator of cGKI, completely blocked Rap1 activation, (iii) Rp-8pCPT-cGMPS, a cGKI inhibitor, reversed NO effects and (iv) expression of cGKI in cGKI-deficient megakaryocytes inhibited Rap1 activation. NO/cGMP/cGKI effects were independent of the type of stimulus used for Rap1 activation. Thrombin-,ADP- and collagen-induced formation of Rap 1-GTP in platelets as well as turbulence-induced Rap 1 activation in megakaryocytes were inhibited. Furthermore, cGKI inhibited ADP-induced Rap 1 activation induced by the Galpha(i)-coupled P2Y12 receptor alone, i.e. independently of effects on Ca2+-signalling. From these studies we conclude that NO/cGMP inhibit Rap 1 activation in human platelets and that this effect is mediated by cGKI. Since Rap1 controls the function of integrin alpha(IIb)beta3, we propose that Rap 1 inhibition might play a central role in the anti-aggregatory actions of NO/cGMP.
منابع مشابه
High Glucose Inhibits the Aspirin-Induced Activation of the Nitric Oxide/cGMP/cGMP-Dependent Protein Kinase Pathway and Does Not Affect the Aspirin-Induced Inhibition of Thromboxane Synthesis in Human Platelets
Since hyperglycemia is involved in the "aspirin resistance" occurring in diabetes, we aimed at evaluating whether high glucose interferes with the aspirin-induced inhibition of thromboxane synthesis and/or activation of the nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) pathway in platelets. For this purpose, in platelets from 60 healthy volunteers incubated for 60 min with 5-25 mmo...
متن کاملDirect activation of PDE5 by cGMP: long-term effects within NO/cGMP signaling
n platelets, the nitric oxide (NO)–induced cGMP response is indicative of a highly regulated interplay of cGMP formation and cGMP degradation. Recently, we showed that within the NO-induced cGMP response in human platelets, activation and phosphorylation of phosphodiesterase type 5 (PDE5) occurred. Here, we identify cyclic GMP-dependent protein kinase I as the kinase responsible for the NO-indu...
متن کاملIRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation.
Defective regulation of platelet activation/aggregation is a predominant cause for arterial thrombosis, the major complication of atherosclerosis triggering myocardial infarction and stroke. A central regulatory pathway conveying inhibition of platelet activation/aggregation is nitric oxide (NO)/cyclic GMP (cGMP) signaling by cGMP-dependent protein kinase I (cGKI). However, the regulatory casca...
متن کاملDirect activation of PDE5 by cGMP
In platelets, the nitric oxide (NO)-induced cGMP response is indicative of a highly regulated interplay of cGMP formation and cGMP degradation. Recently, we showed that within the NO-induced cGMP response in human platelets, activation and phosphorylation of phosphodiesterase type 5 (PDE5) occurred. Here, we identify cyclic GMP-dependent protein kinase I as the kinase responsible for the NO-ind...
متن کاملFunctional dissection of the cGK substrate IRAG using transgenic models
NO/cGMP signalling via cGMP-dependent kinase I (cGKI) induces a variety of physiological functions comprising relaxation of smooth muscle and inhibition of platelet aggregation. Several signalling pathways of cGKI exist including the interaction of the cGKIβ isozyme with the inositol 1,4,5-trisphosphate receptor I (IP3RI) associated protein cGMP kinase substrate (IRAG). To get insight into the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Thrombosis and haemostasis
دوره 93 2 شماره
صفحات -
تاریخ انتشار 2005